Equivalence of the 8-vertex model on a Kagome lattice with the 32-vertex model on a triangular lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 9 L183
(http://iopscience.iop.org/0305-4470/9/12/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:14

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Equivalence of the 8 -vertex model on a Kagomé lattice with the 32 -vertex model on a triangular lattice

K Y Lin \dagger
Physics Department, National Tsing Hua University, Hsinchu, Taiwan, Republic of China

Received 27 July 1976

Abstract

It is shown that the 8 -vertex model on a Kagome lattice is equivalent to the 32 -vertex model on a triangular lattice. In particular, the ice-rule vertex model on a Kagomé lattice is equivalent to the 20 -vertex model on a triangular lattice.

The 8 -vertex model on a square lattice was solved by Baxter (1971). The 8 -vertex model on a Kagomé lattice was considered by Lin (1976), and the soluble case of a free-fermion model was solved by the Pfaffian method. The Pfaffian solution of the 32-vertex model on a triangular lattice was given by Sacco and Wu (1975). The F model on a triangular lattice was considered by Baxter (1969) and can be solved exactly when the vertex weights satisfy a special condition (which includes the triangular ice model).

We shall demonstrate that the 8 -vertex model on a Kagomé lattice is equivalent to the 32 -vertex model on a triangular lattice. In particular, the ice-rule vertex model on a Kagomé lattice (Lin 1975, Lin and Tang 1976) is equivalent to the ice-type 20-vertex model on a triangular lattice (Kelland 1974a, b). The Rys F model (Rys 1963) is formulated on a Kagomé lattice. For certain values of the vertex weights the Kagomé lattice F model is equivalent to the soluble F model on a triangular lattice.

Place arrows on the bonds of a Kagomé lattice and allow only those configurations with an even number of arrows pointing into each vertex. The three sublattices are denoted by A, B and C , as shown in figure 1 . The eight possible configurations allowed at each vertex and the corresponding vertex weights are shown in figure 2. Let the vertex weights be

$$
\begin{align*}
\{\omega\} & =\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{8}\right\} & & \text { on } \mathrm{A} \\
\left\{\omega^{\prime}\right\} & =\left\{\omega_{1}^{\prime}, \omega_{2}^{\prime}, \ldots, \omega_{8}^{\prime}\right\} & & \text { on } \mathrm{B} \tag{1}\\
\left\{\omega^{\prime \prime}\right\} & =\left\{\omega_{1}^{\prime \prime}, \omega_{2}^{\prime \prime}, \ldots, \omega_{8}^{\prime \prime}\right\} & & \text { on } \mathrm{C} .
\end{align*}
$$

The partition function is

$$
\begin{equation*}
Z=\sum\left(\prod \omega_{i}^{n_{i}}\right)\left(\prod \omega_{i}^{\prime n_{i}}\right)\left(\prod \omega_{i}^{\prime n_{i}^{\prime \prime}}\right) \tag{2}
\end{equation*}
$$

where the summation is extended to all allowed arrow configurations, and $n_{i}\left(n_{i}^{\prime}, n_{i}^{\prime \prime}\right)$ is the number of i th-type sites on $\mathrm{A}(\mathrm{B}, \mathrm{C})$. The ice-rule vertex model where there are two arrows entering each vertex corresponds to the case

$$
\begin{equation*}
\omega_{i}=\omega_{i}^{\prime}=\omega_{i}^{\prime \prime}=0 \quad \text { if } i=7,8 \tag{3}
\end{equation*}
$$

[^0]

Figure 1. The Kagomé lattice with three sublattices A, B and C.

Figure 2. The 8 -vertex configurations and the corresponding vertex weights on a Kagomé lattice.

The F model is a special case of the ice-rule vertex model such that the vertex configurations which differ only by rotation and reflection are treated alike. In the Kagomé lattice F model we define

$$
\begin{align*}
& \alpha \equiv \omega_{1}=\omega_{2}=\omega_{1}^{\prime}=\omega_{2}^{\prime}=\omega_{3}^{\prime \prime}=\omega_{4}^{\prime \prime} \\
& \beta \equiv \omega_{3}=\omega_{4}=\omega_{3}^{\prime}=\omega_{4}^{\prime}=\omega_{1}^{\prime \prime}=\omega_{2}^{\prime \prime} \tag{4}\\
& \gamma \equiv \omega_{5}=\omega_{6}=\omega_{5}^{\prime}=\omega_{6}^{\prime}=\omega_{5}^{\prime \prime}=\omega_{6}^{\prime \prime}
\end{align*}
$$

Place arrows on the bonds of a triangular lattice and allow only those configurations with an odd number of arrows pointing into each vertex. The 32 possible configurations allowed at each vertex and the corresponding vertex weights u_{i} are shown in figure 3 . The ice-type 20 -vertex model where there are three arrows entering and leaving each vertex corresponds to the case

$$
\begin{equation*}
u_{i}=0 \quad \text { if } i>20 \tag{5}
\end{equation*}
$$

The triangular lattice F model corresponds to

$$
u_{i}= \begin{cases}\mathrm{a} & \text { if } i=1, \ldots, 6 \tag{6}\\ \mathrm{~b} & \text { if } i=7,8 \\ \mathrm{c} & \text { if } i=9, \ldots, 20 \\ 0 & \text { otherwise }\end{cases}
$$

When the vertex weights satisfy the condition

$$
\begin{equation*}
(a-c)^{2}=a(b-c) \tag{7}
\end{equation*}
$$

the F model can be solved exactly by the method of Bethe ansatz (Baxter 1969).

Figure 3. The 32 -vertex configurations and the corresponding vertex weights on a triangular lattice.

The 8 -vertex model on a Kagomé lattice with $3 N$ sites is equivalent to the 32 -vertex model on a triangular lattice with N sites, and the vertex weights are related by

$u_{1}=(111)+(875)$	$u_{2}=(222)+(786)$	$u_{3}=(144)+(857)$
$u_{4}=(233)+(768)$	$u_{5}=(313)+(578)$	$u_{6}=(424)+(687)$
$u_{7}=(342)+(556)$	$u_{8}=(431)+(665)$	$u_{9}=(164)+(837)$
$u_{10}=(253)+(748)$	$u_{11}=(116)+(872)$	$u_{12}=(225)+(781)$
$u_{13}=(387)+(524)$	$u_{14}=(478)+(613)$	$u_{15}=(365)+(531)$
$u_{16}=(456)+(642)$	$u_{17}=(362)+(536)$	$u_{18}=(451)+(645)$
$u_{19}=(345)+(551)$	$u_{20}=(436)+(662)$	$u_{21}=(237)+(764)$
$u_{22}=(148)+(853)$	$u_{23}=(272)+(716)$	$u_{24}=(181)+(825)$
$u_{25}=(275)+(711)$	$u_{26}=(186)+(822)$	$u_{27}=(317)+(574)$
$u_{28}=(428)+(683)$	$u_{29}=(474)+(617)$	$u_{30}=(383)+(528)$
$u_{31}=(257)+(744)$	$u_{32}=(168)+(833)$	

where

$$
(i j k) \equiv\left(\omega_{i} \omega_{j}^{\prime} \omega_{k}^{\prime \prime}\right) .
$$

A simple way to see this is to replace each allowed vertex configuration on a triangular lattice by three connected vertices on a Kagomé lattice. An example is shown in figure 4.

Figure 4. An example to show the equivalence of the 8 -vertex model on a Kagomé lattice with the 32 -vertex model on a triangular lattice.

It follows from equations (8) that $u_{i}=0(i>20)$ if $\omega_{l}=\omega_{l}^{\prime}=\omega_{l}^{\prime \prime}=0(l>6)$. Therefore the ice-rule vertex model on a Kagomé lattice is equivalent to the 20 -vertex model on a triangular lattice. The F model on a Kagomé lattice is equivalent to a special case of the 20-vertex model on a triangular lattice such that

$$
u_{i}= \begin{cases}\alpha^{2} \beta & \text { if } i=1, \ldots, 6 \tag{9}\\ \beta^{3}+\gamma^{3} & \text { if } i=7,8 \\ \alpha^{2} \gamma & \text { if } i=9, \ldots, 14 \\ \beta^{2} \gamma+\beta \gamma^{2} & \text { if } i=15, \ldots, 20 .\end{cases}
$$

It follows from equation (9) that the Kagome lattice F model is equivalent to the triangular lattice F model when the vertex weights satisfy

$$
\begin{equation*}
\alpha^{2}=\beta(\beta+\gamma) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
a=\alpha^{2} \beta \quad b=\beta^{3}+\gamma^{3} \quad c=\alpha^{2} \gamma \tag{11}
\end{equation*}
$$

Note that the condition (10) for the Kagome lattice F model implies the soluble condition (7) for the corresponding triangular lattice F model.

The ice model on a Kagomé lattice ($\alpha=\beta=\gamma=1$) does not satisfy equation (10) and is related to the triangular ice model $(a=b=c=1)$ by

$$
\begin{equation*}
W(\text { Kagomé lattice })<(2 W(\text { triangular lattice }))^{1 / 3}=3^{1 / 2} \tag{12}
\end{equation*}
$$

where $W=\lim _{N \rightarrow \infty} Z^{1 / N}$ and N is the total number of vertices.

References

Baxter R J 1969 J. Math. Phys. 10 1211-6

- 1971 Phys. Rev. Lett. 26 832-3

Kelland S B 1974a J. Phys. A: Math., Nucl. Gen. 7 1907-12
-_ 1974b Aust. J. Phys. 27 813-9
Lin K Y 1975 J. Phys. A: Math. Gen. 8 1899-919

- 1976 J. Phys. A : Math. Gen. 9 581-91

Lin K Y and Tang D L 1976 J. Phys. A: Math. Gen. 9 1101-7
Rys F 1963 Helv. Phys. Acta 36 537-59
Sacco J E and Wu F Y 1975 J. Phys. A : Math. Gen. 8 1780-7

[^0]: \dagger Supported by the National Science Council, Republic of China.

